40 research outputs found

    CHARDA: Causal Hybrid Automata Recovery via Dynamic Analysis

    Full text link
    We propose and evaluate a new technique for learning hybrid automata automatically by observing the runtime behavior of a dynamical system. Working from a sequence of continuous state values and predicates about the environment, CHARDA recovers the distinct dynamic modes, learns a model for each mode from a given set of templates, and postulates causal guard conditions which trigger transitions between modes. Our main contribution is the use of information-theoretic measures (1)~as a cost function for data segmentation and model selection to penalize over-fitting and (2)~to determine the likely causes of each transition. CHARDA is easily extended with different classes of model templates, fitting methods, or predicates. In our experiments on a complex videogame character, CHARDA successfully discovers a reasonable over-approximation of the character's true behaviors. Our results also compare favorably against recent work in automatically learning probabilistic timed automata in an aircraft domain: CHARDA exactly learns the modes of these simpler automata.Comment: 7 pages, 2 figures. Accepted for IJCAI 201

    Automated Game Design Learning

    Full text link
    While general game playing is an active field of research, the learning of game design has tended to be either a secondary goal of such research or it has been solely the domain of humans. We propose a field of research, Automated Game Design Learning (AGDL), with the direct purpose of learning game designs directly through interaction with games in the mode that most people experience games: via play. We detail existing work that touches the edges of this field, describe current successful projects in AGDL and the theoretical foundations that enable them, point to promising applications enabled by AGDL, and discuss next steps for this exciting area of study. The key moves of AGDL are to use game programs as the ultimate source of truth about their own design, and to make these design properties available to other systems and avenues of inquiry.Comment: 8 pages, 2 figures. Accepted for CIG 201

    Automatic Mapping of NES Games with Mappy

    Full text link
    Game maps are useful for human players, general-game-playing agents, and data-driven procedural content generation. These maps are generally made by hand-assembling manually-created screenshots of game levels. Besides being tedious and error-prone, this approach requires additional effort for each new game and level to be mapped. The results can still be hard for humans or computational systems to make use of, privileging visual appearance over semantic information. We describe a software system, Mappy, that produces a good approximation of a linked map of rooms given a Nintendo Entertainment System game program and a sequence of button inputs exploring its world. In addition to visual maps, Mappy outputs grids of tiles (and how they change over time), positions of non-tile objects, clusters of similar rooms that might in fact be the same room, and a set of links between these rooms. We believe this is a necessary step towards developing larger corpora of high-quality semantically-annotated maps for PCG via machine learning and other applications.Comment: 9 pages, 7 figures. Appearing at Procedural Content Generation Workshop 201

    Tile Pattern KL-Divergence for Analysing and Evolving Game Levels

    Full text link
    This paper provides a detailed investigation of using the Kullback-Leibler (KL) Divergence as a way to compare and analyse game-levels, and hence to use the measure as the objective function of an evolutionary algorithm to evolve new levels. We describe the benefits of its asymmetry for level analysis and demonstrate how (not surprisingly) the quality of the results depends on the features used. Here we use tile-patterns of various sizes as features. When using the measure for evolution-based level generation, we demonstrate that the choice of variation operator is critical in order to provide an efficient search process, and introduce a novel convolutional mutation operator to facilitate this. We compare the results with alternative generators, including evolving in the latent space of generative adversarial networks, and Wave Function Collapse. The results clearly show the proposed method to provide competitive performance, providing reasonable quality results with very fast training and reasonably fast generation.Comment: 8 pages plus references. Proceedings of GECCO 201

    Tabletop Roleplaying Games as Procedural Content Generators

    Get PDF
    Tabletop roleplaying games (TTRPGs) and procedural content generators can both be understood as systems of rules for producing content. In this paper, we argue that TTRPG design can usefully be viewed as procedural content generator design. We present several case studies linking key concepts from PCG research -- including possibility spaces, expressive range analysis, and generative pipelines -- to key concepts in TTRPG design. We then discuss the implications of these relationships and suggest directions for future work uniting research in TTRPGs and PCG.Comment: 9 pages, 2 figures, FDG Workshop on Procedural Content Generation 202

    Exploring Level Blending across Platformers via Paths and Affordances

    Full text link
    Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for discovering and generating content in novel domains via techniques such as level blending and domain transfer. In this paper, we build on these works and introduce a new PCGML approach for producing novel game content spanning multiple domains. We use a new affordance and path vocabulary to encode data from six different platformer games and train variational autoencoders on this data, enabling us to capture the latent level space spanning all the domains and generate new content with varying proportions of the different domains.Comment: 6 pages, 5 figures, 16th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2020

    Interactive Evolution and Exploration within Latent Level-Design Space of Generative Adversarial Networks

    Get PDF
    Generative Adversarial Networks (GANs) are an emerging form of indirect encoding. The GAN is trained to induce a latent space on training data, and a real-valued evolutionary algorithm can search that latent space. Such Latent Variable Evolution (LVE) has recently been applied to game levels. However, it is hard for objective scores to capture level features that are appealing to players. Therefore, this paper introduces a tool for interactive LVE of tile-based levels for games. The tool also allows for direct exploration of the latent dimensions, and allows users to play discovered levels. The tool works for a variety of GAN models trained for both Super Mario Bros. and The Legend of Zelda, and is easily generalizable to other games. A user study shows that both the evolution and latent space exploration features are appreciated, with a slight preference for direct exploration, but combining these features allows users to discover even better levels. User feedback also indicates how this system could eventually grow into a commercial design tool, with the addition of a few enhancements.Comment: GECCO 202
    corecore